
AVES - a first-class child of Ethereum brought to life by Ibro

Fazlić MCS (2022)

AVES is a hard fork of the Ethereum blockchain, with numerous

differences:

1. The mainnet starts with a fresh Genesis block and this allows

the DAG file to be small enough to allow anyone to mine coins,

regardless of hardware.

2. The mining fee has been reduced by more than 50%

compared to Ethereum, so we expect to see a significant

reduction in the cost of using smart contracts.

3. The snapshot sync option has been disabled as our

blockchain is very small at the moment and we do not want

nodes to take over the chain from peers instead of nodes. The

pros and cons were discussed and it was determined that the

pros outweigh the cons.

4. There are no plans to upgrade POS in the (near) future as

this blockchain offers many possibilities. We are also

investigating the implementation of a sub-protocol, also called

the green protocol, where the mining software requires

dedicated hardware from the miners but the resource

consumption is up to 40% lower.

5. The code used in our blockchain stores 5% of each block to

a publicly announced address from which funds are allocated to

alternative energy innovators. This is done through community

surveys and publicised in the media.

 Accounts

An account is like a bank account, except it is not for money,

but for AVS, where it can be held and transferred to different

accounts, and can also be used to run smart contracts. An

account is an entity composed of an address and a private key.

The first 20 bytes of the SHA3-encrypted public key are the

address.

There are two types of accounts:

1. Externally Owned Account: This is the basic type of an Aves

account, it works similarly to a Bitcoin account. A private key

controls the address for EOAs. (Externally Owned Account).

Anyone can open as many EOAs as they need. The account is

created each time a wallet is created, with a private key needed

to access the EOA, check the balance, send and receive

transactions and create smart contracts.

Advantages:

Transactions from an external account to a contract account

can trigger code that can perform many different specific

actions, such as transferring tokens or even creating a whole

new contract.

External accounts cannot list incoming transactions.

2. Contract-based account: Contract-based accounts have all

the features of an Externally Owned Account, but unlike EOAs,

they are formed when a contract code is deployed and are

controlled by contract codes accessed via a unique address.

When a party accepts a contract, a completely unique account

is created that contains all charges associated with that

contract. Each contract is given a unique serial number called a

contract account.

Advantages:

A contract account can list incoming transactions.

Contract accounts can be set up as multisig accounts.

A multisig account can be set up to have a daily limit set by the

account holder. Only if this limit is exceeded are multiple

signatures required.

Disadvantage:

Creating contract accounts costs energy, as it takes up valuable

computing and storage resources of the network. The energy

needed is provided by fossil fuels such as natural gas and oil.

Contract accounts cannot initiate new transactions on their own.

Instead, contract accounts can only send transactions in

response to other transactions they receive from either an

Externally Owned Account or another account.

 Types of contract accounts

Simple Account: The account is set up and maintained by a

single account holder.

Multisig (multisignature) account: A multisig wallet contains

several bearer accounts, one of which is also the author in each

case.

Externally owned accounts vs. contract-based accounts

Explanations of fields within accounts

Nonce: The nonce in an account indicates the number of

transactions sent from that account. This ensures that each

transaction is unique by counting for each transaction.

Avs Balance: The balance in an account indicates the amount

of Avs held in an Avs shop in the current Avs account.

Contract Code: This is optional as not all accounts have a

contract code. Note, however, that it cannot be changed after

execution.

Code hash: The value of the code hash for contract accounts is

a hash that refers to the code of the account. Since there is no

code associated with an external account, the code hash is an

empty string.

Externally owned accounts and key pairs

An account is a private-public key pair that can be associated

with a blockchain address.

It is an "owned" or "external" account if the private key is known

and controlled by someone. Otherwise, it is a "smart contract"

account if the private key is unknown and an address exists.

Contract accounts are not associated with a private key, even if

externally owned accounts have one.

Control and access to assets and contracts are granted via the

EOA private key. The user is responsible for the security of the

private key.

The account's public key, on the other hand, is, as the name

implies, public. This key serves as the identity of the account. A

one-way cryptographic function is used to generate a public key

from the private key.

For example, when you create an account, you keep a private

key for yourself while sharing the public key. Transactions

between accounts are carried out with public keys.

Smart contract accounts: Like EOAs (Externally Owned

Accounts), each smart contract account has a unique public

address, and it is impossible to distinguish them from EOAs

based on their address. Smart Contract accounts can receive

and execute transactions just like EOAs. The main difference is

that no single private key is used to verify transactions. Instead,

the logic by which the account processes transactions is

defined in the smart contract code. Smart contracts are

programmes that run on the Aves blockchain and are executed

when very specific conditions are met.

This feature of smart contract accounts, unlike EOAs, allows

these accounts to implement access rights that define by whom,

how and under what conditions transactions can be executed,

as well as more complex logical tasks.

Messages and transactions

"Messages" in Aves are similar to "transactions" in Bitcoin, but

with 3 key differences. First, an Aves message can be created

by either an external entity or contract, whereas a Bitcoin

transaction can only be created externally. Second, Aves

messages can contain data. Third, the recipient of an Aves

message, if it is a contract account, has the option to send a

response. This allows Aves messages to take on the role of

functions.

The term "transaction" is used in Aves to refer to the signed

data packet that stores a message to be sent from an external

account. Transactions contain the recipient of the message, a

signature identifying the sender, the amount of Avs and data

being sent, and two values called STARTGAS and GASPRICE.

To prevent exponential bloat and infinite loops in the code, each

transaction must set a limit on how many computational steps of

code execution it can trigger, including the initial message and

any additional messages that are triggered during execution.

STARTGAS is this restriction (limit), and GASPRICE is the fee

to be paid to the miner per computational step. If the transaction

execution "runs out of gas", all state changes are reversed -

except for the payment of the fees. If the transaction execution

ends with some gas remaining, the remaining portion of the

fees is returned to the sender. For the creation of a contract,

there is a separate transaction type and a corresponding

message type. The address of a contract is calculated based on

the hash value of the account nonce and the transaction data.

An important consequence of the messaging system is the "first

class citizen" property of Aves - the idea that contracts have the

same powers as external accounts, including the ability to send

messages and create other contracts. This allows contracts to

perform many functions simultaneously: For example, a

member of a decentralised organisation (one contract) can be

an escrow account (another contract) between a paranoid

individual using bespoke quantum-safe Lamport signatures (a

third contract) and a co-signing entity, which in turn uses a five-

key account for security (a fourth contract). The strength of the

Aves platform is that the decentralised organisation and the

trust contract do not have to worry about what form of account

each party uses.

Aves state transition function

The state transition function of Aves, APPLY (S, TX) - > S' can

be defined as follows:

1. Check that the transaction is well-formed (i.e. has the correct

number of values), the signature is valid and the nonce matches

the nonce in the sender's account. If not, return an error.

2. Calculate the transaction fee as STARTGAS * GASPRICE

and determine the sender address from the signature. Subtract

the fee from the sender's account balance and increase the

sender's nonce. If the balance is not sufficient to spend the fee,

return an error.

3. Initialise GAS = STARTGAS and take off a certain amount of

gas per byte to pay for the bytes of the transaction.

4. Transfer the transaction value from the sender's account to

the receiver's account. If the receiver account does not yet

exist, create it. If the recipient account is a contract, execute the

contract code either until completion or until the execution runs

out of gas.

5. If the transfer of value failed because the sender did not have

enough money or the code execution ran out of gas, reverse all

state changes except the payment of fees and credit the fees to

the miner's account.

6. Otherwise, refund the fees for the remaining gas to the

sender and transfer the fees paid for the used gas to the miner.

For example, let us assume that the code of the contract is as

follows

if !contract.storage[msg.data [0]]:

contract.storage[msg.data [0]] = msg.data [1]

Note that the contract code is actually written in low-level EVM

code. This example is written in Serpent, our high-level

language, for clarity and can be compiled down to EVM code.

Let us assume the contract shop is empty at the beginning and

a transaction is sent with 10 Avs value, 2000 gas, 0.001 Avs

gas price and two data fields: [2, 'CHARLIE'][3]. The process

for the state transition function in this case is as follows:

1. Check that the transaction is valid and correctly constructed.

2. Check that the sender of the transaction has at least 2000 *

0.001 = 2 Avs. If so, deduct 2 Avs from the sender's account.

3. Initialise gas = 2000; assuming the transaction is 170 bytes

long and the byte charge is 5, deduct 850, leaving 1150 gas.

4. Subtract another 10 Avs from the sender's account and add it

to the contractor's account.

5. Execute the code. In this case it is quite simple: it checks

whether the contract's storage at index 2 is used up, finds that it

is not, and sets the storage at index 2 to the value CHARLIE.

Let us say 187 gas is consumed, so the remaining gas is 1150 -

187 = 963. 6. Add 963 * 0.001 = 0.963 Avs to the sender's

account and return the resulting status.

If there were no contract on the receiving side of the

transaction, then the total transaction charge would simply be

equal to the specified GASPRICE multiplied by the length of the

transaction in bytes, and the data sent with the transaction

would be irrelevant. Also note that contract-initiated messages

may assign a gas limit to the calculation they initiate. If the sub-

calculation runs out of gas, it will only be reset to the point

where the message was invoked. So, just like transactions,

contracts can protect their limited computing resources by

setting strict limits on the sub-calculations they trigger.

Code execution

The code in Aves contracts is written in a low-level, stack-based

bytecode language known as

"Ethereum Virtual Machine Code" or "EVM Code". The code

consists of a series of bytes, with each byte representing an

operation. Generally, code execution is an infinite loop that

consists of repeatedly executing the operation at the current

programme counter (which starts at zero) and then

incrementing the programme counter by one until the end of the

code is reached or an error or STOP or RETURN instruction is

detected. Operations have access to three types of memory

where they can shop data:

● The stack, a last-in-first-out container into which 32-byte

values can be pushed and popped

● Memory, an infinitely expandable byte array

● The contract's long-term memory, a key/value shop in which

keys and values are each 32 bytes in size. Unlike the stack and

memory, which are reset after the end of the calculation, the

memory remains for the long term.

The code can also access the value, sender and data of the

incoming message, as well as the block header data, and the

code can also return a byte array of data as output.

The formal execution model of the EVM code is surprisingly

simple. While the Aves virtual machine is running, its complete

computational state can be described by the tuple (block_state,

transaction, message, code, memory, stack, pc, gas), where

block_state is the global state containing all accounts and

includes balances and memory. In each round of execution, the

current statement is found by taking the pc-th byte of code, and

each statement has its own unique definition in terms of how it

affects the tuple. For example: ADD fetches two items from the

stack and adds them, reduces gas by 1 and increases pc by 1.

SSTORE fetches the top two items from the stack and inserts

the second item into the contract's memory at the index

specified by the first item, reduces gas by up to 200 and

increases pc by 1. Although there are many ways to optimise

Aves through just-in-time compilation, a simple implementation

of Aves can be completed in a few hundred lines of code.

Blockchain and Mining

The Aves blockchain is similar to the Bitcoin blockchain in many

ways, although there are some differences. The main difference

between Aves and Bitcoin in terms of blockchain architecture is

that, unlike Bitcoin, Aves blocks contain a duplicate of both the

transaction list and the last state. In addition, two different

values, the block number and the difficulty, are stored in the

block.

The algorithm for block validation in Aves is as follows:

1. Check if the previous block referenced exists and is valid.

2. Check that the timestamp of the block is greater than that of

the referenced previous block and less than 15 minutes into the

future 3. Check that the block number, difficulty, transaction

root, uncle root and gas limit (various Aves-specific low-level

concepts) are valid.

4. Check that the proof of work is valid for the block.

5. Let S[0] be the STATE _ROOT of the previous block.

6. TX let be the transaction list of the block, with n transactions.

For all in in 0...n-1, setS[i+1] =

APPLY(S[i], TX [i]). If any of the applications return an error, or

if the total gas consumption of the block exceeds the GASLIMIT

up to that point, return an error.

7. Let S_ FINAL be S[n], but adding the block reward paid to

the prospector.

8. Check if S_ FINAL is the same as STATE _ROOT. If it is, the

block is valid, otherwise it is invalid.

The approach may seem very inefficient at first glance, as the

entire status has to be stored for each block, but in reality the

efficiency should be comparable to that of Bitcoin. The reason

for this is that the status is stored in the tree structure and only

a small part of the tree needs to be changed after each block.

For this reason, the majority of the tree should be the same

between two adjacent blocks, so that the data can be stored

once and referenced twice using pointers (i.e. hashes of

subtrees). This is done using a special type of tree called a

"Patricia tree", which is a variation of the Merkle tree concept

and allows nodes to be inserted and deleted efficiently, not just

changed. Furthermore, since all state information is part of the

last block, there is no need to shop the entire blockchain history

- a method that, if it could be applied to Bitcoin, would

mathematically offer a 5-20-fold space saving.

Applications

In general, there are three types of applications that are built on

top of Aves. The first category is financial applications that

provide users with more powerful ways to manage and contract

their money. These include sub-currencies, financial

derivatives, hedging contracts, savings, wills and finally even

some classes of full-scale employment contracts. The second

category is semi-financial applications that involve money but

also have a strong non-monetary side; a perfect example is

self-enforcing rewards for solving math problems. Finally, there

are applications such as online voting and decentralised

governance that have no financial character at all.

Token System

On-blockchain token systems include everything from sub-

currencies representing assets such as US dollars and gold, to

corporate stocks, individual tokens representing smart

properties, secure anti-counterfeit coupons, and even traditional

value respects. It has a wide variety of uses, all the way up to

unconventional token systems. incentive point system. A token

system is surprisingly easy to implement in Aves. The most

important thing to understand is that any currency or token

system is basically a database with one operation. Subtract X

units from A, giving B

X units. However, (1) X occurs before X units are traded for at

least X units. (2) the transaction is authorized by A;

Implementing this logic in a contract is all that is required to

implement a token system. The basic code for implementing the

token system in

Serpent is:from = msg.sender to = msg.data[0] value =

msg.data[1]

if contract.storage[from] >= values :

contract.storage[from] = contract.storage[from] value

contract.storage[to] = contract.storage[to] + value

This is essentially a literal implementation of the state transition

function "banking system".

Added a few lines of code to allow for the first step of

distributing currency units first and a few other edge cases.

Ideally, add a function that allows other contracts to query the

balance of the address. But that's it. Theoretically, an Aves-

based

token scheme acting as a sub-currency could include another

important feature not found in Bitcoin-based on-chain meta-

currencies. It is the ability to pay transaction fees directly in that

currency. This is implemented such that the contract maintains

an Avs balance, uses this to refund the Avs used to pay fees to

the sender, and accumulates internal currency units received as

fees to replenish this balance. , is implemented to resell them.

With always ongoing auctions. So the user has to "activate"

their account with Avs, but with Avs it's reusable because the

contract refunds every time.

Financial Derivatives and Currencies of Stable Value

Financial derivatives are the most common application of "smart

contracts" and one of the easiest to implement in code. A major

challenge in implementing financial contracts is that most of

them require a reference to an external price ticker. For

example, a highly desirable application would be a smart

contract to hedge the volatility of his AVS (or any other

cryptocurrency) against the US dollar, but that would require the

contract to know the value of his AVS/USD. The easiest way to

do this is through a "data feed" contract that is controlled by a

specific party (such as NASDAQ) and designed to allow that

party to renew the contract as needed.

This allows other contracts to send messages to this contract

and receive responses with prices. Considering this important

factor, the hedging contract looks like this:

1. Wait for Party A to enter her 1000 Avs.

2. Wait for Party B to enter her 1000 Avs.

3. Record in memory the USD value of 1000 Avs calculated by

querying the data feed contract. Suppose this is $x.

4. After 30 days, A or B "pings" the contract and sends x$ worth

of Av (calculated by rescanning the data feed contract to get the

new price) to A and the rest to B allow it to be sent. This type of

contract could have great potential in crypto commerce. One of

the main problems mentioned with cryptocurrencies is the fact

that they are unstable. Many users and traders want security

and convenience when working with crypto assets, but they

may not want to face the possibility of losing 23% of the value of

their funds in a single day. To date, the most commonly

proposed solution is issuer-backed assets. The idea is to create

a sub-currency where the issuer has the right to issue and

withdraw units, and who provides (offline) units of a particular

underlying asset (e.g. gold), which is one unit provided by the

currency. But it's about creating USD.). The issuer then

promises to provide her 1 unit of the underlying asset to the

person returning her 1 unit of cryptocurrency. This mechanism

allows non-crypto assets to be “lifted” to crypto if the issuer is

trusted.

In practice, however, issuers are not always trustworthy, and in

some cases, banks' infrastructure is too weak or too hostile for

such services to exist.Financial derivatives are an alternative.

provide the means. A decentralized marketplace of speculators

betting on crypto benchmarks rising in price instead of a single

issuer providing the funds to back the asset fills this role. Unlike

the issuer, the speculator has no chance of default on the part

of the trade as the hedge contract holds the funds in trust. Note

that this approach is not fully decentralized as it requires a

trusted source to provide price tickers. It could probably be

classified as free speech), reducing the chance of fraud.

Identity and Reputation System

Namecoin, the first of all alternative cryptocurrencies, applies a

Bitcoin-like blockchain to allow users to register their name in a

public database along with various data. We tried to provide a

name registration system that could The most commonly cited

use case is a DNS system that maps domain names like

"bitcoin.org" (or "bitcoin.bit" for Namecoin) to her IP address.

Other use cases might include email authentication or more

advanced reputation systems. The basic contract for

Aves to provide a Namecoin-like name registration system is:

if !contract.storage[tx.data[0]]:

Decentralized file storage

Over the past decade, there have emerged a number of popular

online file storage startups, the most prominent being Dropbox,

allowing users to upload a backup of their hard drive and have

the service store the backup and allow the user to access it

inexchange for a monthly fee However, at this point the file

storage market is at times relatively inefficient; a cursory look at

various existing solutions shows that, particularly at the

"uncanny valley" 20-200 GB level at which neither free quotas

nor enterprise-level discounts kick in, monthly prices for

mainstream file storage costs are such that you are paying for

more than the cost of the entire hard drive in a single month.

Aves contracts can allow for the development of a decentralized

file storage ecosystem, where individual users can earn small

quantities of money by renting out their own hard drives and

unused space can be used to further drive down the costs of file

storage.

The key underpinning piece of such a device would be what we

have termed the "decentralized Dropbox contract". This contract

works as follows. First, one splits the desired data up into

blocks, encrypting each block for privacy, and builds a Merkle

tree out of it. One then makes a contract with the rule that,

every N blocks, the contract would pick a random index in the

Merkle tree (using the previous block hash, accessible from

contract code, as a source of randomness), and give X Avs to

the first entity to supply a transaction with a simplified payment

verification-like proof of ownership of the block at that particular

index in the tree. When a user wants to re-download their file,

they can use a micropayment channel protocol (eg. pay 1 szabo

per 32 kilobytes) to recover the file; the most fee-efficient

approach is for the payer not to publish the transaction until the

end, instead replacing the transaction with a slightly more

lucrative one with the same nonce after every 32 kilobytes.

A crucial function of the protocol is that, although it may seem

like one is trusting many random nodes not to decide to forget

the file, one can reduce that risk down to near-zero by splitting

the file into many pieces via secret sharing, and watching the

contracts to see each piece is still in some node's possession. If

a contract is still paying out money, that provides a

cryptographic proof that someone out there is still storing the

file.

Decentralized Autonomous Organization

The general concept of a 'decentralized organization' is that a

certain number of members or shareholders, perhaps in a

majority of 67%, have the right to use and change the entity's

funds. The concept of a virtual entity with groups. code.

Members collectively decide how the organization should

allocate its funds. Methods of allocating DAO funds can range

from bonuses, salaries, to even more exotic mechanisms like

internal currency to reward work. It essentially replicates the

legal specifications of a traditional business or non-profit

organization, but uses only cryptographic blockchain technology

for enforcement. has revolved around a “capitalist” model of a

“decentralized autonomous society” (DAC) with shareholders

paying An alternative, perhaps called a “decentralized

autonomous community,” would require all members to share

decision-making equally, and her 67% of existing members to

approve adding or removing members.

Here's a general overview of how DO is encoded: The simplest

design is self-modifying code that changes when her two-thirds

of the members agree to the change. Your code is theoretically

immutable, but you can easily get around this by placing parts

of your code in separate contracts and storing the addresses of

the contracts you call in mutable memory, effectively reducing

mutability. can have A naive implementation of such a DAO

contract has three transaction types distinguished by the data

provided in the transaction. Storage index K of value V

● [0,i] Register approval for proposal i

● [2,i] Close proposal i if enough votes are cast

The contract has these There are respective terms of A record

is kept of all open save changes and a list of who voted for

them. There is also a list of all members. When a change in

storage reaches her two-thirds of the members who voted for it,

the final transaction can execute the change. A more

sophisticated skeleton would also have built-in voting

functionality for functions such as submitting transactions,

adding and removing members, and potentially enabling Liquid

Democracy-style voting delegation (i.e. anyone can be assigned

to vote for , and the assignment is transitive). , that is, if A

assigns B and B assigns C, then C determines A's vote). This

design allows the DO to grow organically as a decentralized

community, eventually delegating the task of excluding people

who are members to experts, but what the "current system" is In

contrast, experts easily grow over time and individual

community members change their attributes.

Another model is a decentralized enterprise, where each

account can have 0 or more shares, and two-thirds of the

shares are required for decision making. A complete backbone

includes asset management functionality, the ability to create

offers to buy or sell stocks, and the ability to accept offers

(preferably using an order matching mechanism within a

contract). Delegation also exists in the style of liquid

democracy, which generalizes the concept of a "board of

directors." In the future, more sophisticated governance

mechanisms may be implemented. At this point, the

decentralized organization (DO) can be called a distributed

autonomous organization (DAO). The distinction between DO

and DAO is fuzzy, but the general line of demarcation is Avs.

Governance is typically done through policy-like or “automated”

processes. A good intuitive test is the "no common language"

criterion. Can the organization continue to function without her

having two members who speak the same language? Of

course, a simple, traditional shareholder-style company would

fail, but something like the Bitcoin protocol would be far more

likely to succeed. Robin Hanson's Futarchy, an organized

control mechanism with prediction markets, is a good example

of what truly "autonomous" control looks like. Note that you

shouldn't necessarily assume that all DAOs are better than all

DOs. Automation is just a paradigm with very strong benefits in

certain places and likely impractical elsewhere, and there can

be many semi-DAOs as well.

Other applications

1. savings wallet. Ana wants to keep her funds safe, but she's

worried she might lose her private key or she might be hacked

by someone. Suppose there is her AVS contracts with bank

Brent as follows.

● Brent is single and he can withdraw up to 1% of her balance

per day, but Ana can use the key to trade, which she disables.

● Ana and Brent can pull anything together.

Ana 1% a day is usually enough. If Ana wants to withdraw more

money, she can ask Brent for help. When Ana's keys were

hacked, she ran to Brent to transfer her money to her new

contract. Brent will eventually withdraw the money if she loses

her key, and if Brent turns out to be evil, she can disable his

retreat ability.

2. Crop insurance. You can easily enter into financial derivative

contracts, but use a weather data feed instead of a price index.

If a farmer in Iowa bought a derivative that was inversely

proportional to the amount of rainfall in Iowa, when a drought

hit, the farmer would automatically make money, and if there

was enough rain, the crop would do well, so the farmer would

become happy.

3. Distributed data feed. Financial contracts could actually

decentralize their data feeds via a protocol called

SchellingCoin. Basically, SchellingCoin works like this: N parties

each enter a specific date value (e.g. AVS/USD price) into the

system, and the values are sorted and placed between the 25th

and 75th percentiles. will get his 1 token as a reward. Everyone

has an incentive to give an answer that everyone else will

answer, and the only value that a large number of players can

realistically agree on is truth, which is an unambiguous criterion.

This creates a decentralized log that can theoretically provide

any number of values, such as AVS/USD prices, Berlin

temperatures, or the results of certain hard calculations.

4. Smart multi-signature escrow. Bitcoin allows for multi-

signature transaction contracts where, for example, 3 out of 5

keys can issue money. Aves is more granular. For example, 4

out of 5 can use everything, 3 out of 5 he can use up to 10% a

day, 2 out of 5 can use up to 0%.

Additionally, Aves multisig is asynchronous - two parties can

register their signatures on the blockchain at different times and

the last signature will automatically send the transaction.

5. Cloud Computing. EVM technology can also be used to

create verifiable computing environments. This allows users to

have other users perform computations and optionally request

proof that the computations were performed correctly at certain

randomly chosen checkpoints. It enables the creation of a cloud

computing marketplace where all users can participate with

desktops, laptops or dedicated servers, using security deposit

sampling to ensure systems are trustworthy. (i.e. no node can

cheat for profit). Although such systems are not suitable for all

tasks. For example, tasks that require high-level communication

between processes simply cannot run on a large cloud of

nodes. However, other tasks are much easier to parallelize.

Projects such as SETI@home, Folding@home, and genetic

algorithms can be easily implemented on such platforms.

6. Peer-to-Peer Gambling. Any number of peer-to-peer gaming

protocols can be implemented on the Aves blockchain.

Cyberdice by B. Frank Stajano and Richard Clayton. The

simplest gambling protocols are really just contracts for the

difference of the next block hash, from which more advanced

protocols can be built to create non-cheat, near-zero fee

gambling services.

7. Prediction Markets. Prediction markets can also be easily

implemented with an oracle or Schering coin,

A prediction market using SchellingCoin could prove to be the

first mainstream application of Futarchy as a governance

protocol for decentralized organizations.

8. An on-chain decentralized marketplace based on identity and

reputation systems.

NOTES

Modified His GHOST Implementation

The Greedy Heaviest Observed Subtree (GHOST) protocol was

first introduced by Yonatan Sompolinsky and Aviv Zohar in

December 2013 for transactions processed without committing

innovation. It is an end-to-end cryptographic protocol that

provides authentication without relying on a centralized trust

authority. It can be symmetrical or asymmetrical depending on

how you use it. The principle of GHOST is that the sender

simply sends ghost-her packets (or dummy packets) to the

receiver, and the receiver can respond with as many packets as

they want.

The sender creates a digital signature by encrypting the packet

with the recipient's public key.

Recipient decrypts with private key (public key is used for

encryption). If the decryption is successful, the sender is

authenticated and the transaction is accepted. You can also

use the same method to send this ghost-her packet to other

recipients (i.e. the transaction is broadcast). Because there can

be multiple receivers, the protocol is called "GHOST", short for

"Greedy Heaviest Observed Sub-Tree", and in addition to the

direct route to and from the sender, other nodes Used as a

reference to how to route packets through Receiving machine.

Need For GHOST Protocol

Transactions in the blockchain can be published anywhere. In

PoW blockchains such as Bitcoin, Aves, the random nature of

hashes allows two miners to work on the same transaction

creating two blocks of hers.

Only one of these transactions can be added to the main

blockchain.

This means that all the work the second miner has done to

validate her second block is lost (orphaned).

Miners are not rewarded. These blocks are called uncle blocks

in Aves. The GHOST protocol is a chain selection rule that

takes previously orphaned blocks and adds them to the main

blockchain, partially rewarding miners as well. This makes

attacks on the network more difficult. Because not only winning

miners have computing power. More nodes hold power,

discouraging the need for centralized mining pools with larger

chains.

GHOST Protocol Implementation Bitcore, the developer of

Bitcoin, has implemented the GHOST protocol. It is also the first

public implementation of the GHOST protocol.

Avs can use them in different ways to maximize their

effectiveness.

For example, GHOST channels can be used to exchange coins

or various digital assets that do not take advantage of Bitcoin's

block verification time and consensus mechanism (e.g., coins

that require reliable processing, such as stablecoins).

How does the GHOST protocol work?

GHOST works by sending dummy/empty packets or "ghosts" to

the recipient.

Sender sends ghost his packet with header and encrypted

payload, but no block reward (i.e. no transaction). Wait for an

empty packet from the receiver. If an empty packet is received,

it means the receiver has received a ghost, so it can send up to

2*pendingtxns to the network without sending. If multiple nodes

have transactions pending in the queue, some kind of protocol

must be put in place to decide which node will send that block

(i.e. which node wins)

GHOST Protocol Pros

Built with scalability and security in mind, it can easily handle

thousands.

Easy Transactions: In a world where cryptocurrency

transactions can be completed in seconds from anywhere in the

world, the GHOST protocol will allow individuals to make

transactions easily with efficient use of computing power.

Developer Freedom: If a developer doesn't want to be held

responsible for maintaining his own infrastructure, he can

instead use his GHOST-based smart his contracts running on

top of it.

Effort and Time: It's their time and effort. Smart contracts are

much faster and easier than creating packages from scratch.

This will allow more people to join his dApp space. This is very

good for brand new developers and entrepreneurs to join.

Superior Transparency: Provides greater transparency than

Aves' ERC20 standard (which platforms such as MyEthWallet

and MetaMask still use).

It allows developers to accept completely anonymous payment.

Non-anonymous or pseudonymous payment systems are highly

preferred to prevent hackers and online his phishers from

attacking you and stealing your funds.

Denial of GHOST Protocol

Hinder Increased Recruitment: Hinder Increased Recruitment.

Too complicated when not in use: If no one wants to use the

GHOST protocol, the means of paying customers in tokens or

Avs is still too complicated.

Impractical Option: This is not a practical option on the

particular platform. Blockchain-based games come to mind first.

Make dApps Expensive: Make dApps more expensive.

gas cost for every transaction: dApps using this protocol must

pay the gas cost for every transaction, even those that don't

contain a transaction.

Fee

Gas Fee is the amount of Avs (AVS) required for a user of the

Aves blockchain network to complete a transaction on the

network.

gas fees are used by Aves miners to validate transactions and

compensate for their work in securing the network. Gas tariffs

also help prevent the network from being blocked by malicious

users spamming the network with transactions. Aves gas rates

fluctuate because the formulas used to calculate them are

dynamic. High fees and relatively slow speeds are common

criticisms of the Aves network. Gas bills are paid in Avs and

denominated in Gwei or Gigawei. . Each gwei is equal to

0.000000001 AVS. The gas fee is dependent on two factors.

Gas units and gas price.

Gas fee= gas units X gas price

Gas units is a number that depends on the amount of

computation required for a transaction. For e.g., if you send

some Ave to someone, it requires 11,000 gas units. It’s the

minimum number of units required for any transaction. On the

other hand, Gas price is determined by the demand for making

transactions. The more traffic, the higher the price. This is why

you don’t pay the same gas fee each time you transact. In our

case, we have a lower gas fee than Ethereum, so we don't

expect too high prices in case of huge demands for smart

contracts

Our minimal gas fee is:

TxGas uint64 = 11000

TxGasContractCreation uint64 = 23000

Computation And Turing-Completeness

What is Turing completeness?

Turing-completeness is a phrase defined by Alan Turing which

describes the idea that some computing machines are capable

of performing any task a computer can perform.

The concept of Turing-completeness is one at the heart of

software and application development, where it allows code to

be written without having to check beforehand if it will work or

not.

In other words, one can write your program without worrying

about what else is allowed for it to do.This is essential in

determining usability as well as many other aspects of the

software. It is also important to know what “Turing-complete”

means and how it relates to Aves. In Turing’s paper, the

concept of Turing-complete machines is used to disprove the

possibility of true artificial intelligence. For instance, a machine

can eventually imitate the behaviours of a human. In practical

terms, this means that “Turing-complete” allows programmers

to write code that can be used by any computer to achieve any

result. It is necessary for introducing new techniques and ideas

into software programming such as functional programming or

even for understanding ideas about universal computation with

regard to general computing.

One of the main obstacles that cryptocurrency runs into is

reliance on a third party, typically an entity such as a bank.

These companies are responsible for ensuring that a

cryptocurrency can be used in everyday transactions because it

must be compatible with traditional banking services. Turing

completeness is a characteristic of a programming language. A

language is Turing-complete if it can be used to simulate a

Turing machine, which means that an appropriately designed

program can solve any problem that a Universal Turing

Machine (UTM) can solve. In order for this to be feasible,

programs must be free from restrictions, such as halting and

infinite loops. Theoretically, Turing’s completeness enables the

development of highly advanced programs in one language and

allows other projects or companies to create highly advanced

applications using the same tools.

Key points

Aves can be built on the blockchain that has been built right

now with no need to upgrade. A cheap and scalable Blockchain

offering storage and processing power that is almost limitless

and at the same time evolving. Aves will change the whole

Blockchain ecosystem by making it possible to do many more

things on it. All thanks to its Turing-complete language Solidity.

The whole concept of cryptocurrencies and smart contracts is

based on the idea of Turing-complete languages. Smart

contracts are being used for all kinds of applications including

common transactions like payments, buying a car, or even

licensing music or software. Smart contracts can be used in an

efficient way to run state channels between users and to make

payments transparently.

ERC20 is the standard document that provides a structure for

tokens (works on Aves) and it is compatible with most tokens

projects like City Coin, Request Network, and others.

Initial coin offering (ICO) which is a new way to raise money for

a project – uses ERC20 as the monetary unit without issuing

tradable ERC20 tokens before the ICO launch.

Aves as Turing-Completeness.

Since it relies on programmable smart contracts, Aves is not

reliant on third-party services to function. This means that,

theoretically, one could buy a house or make other major

purchases on the Aves blockchain through the use of a smart

contract. However, there are concerns regarding whether or not

this is feasible due to the high costs associated with Turing

complete systems and their ability to run continuously without

human intervention. Theoretically, there are several challenges

associated with Turing complete cryptocurrencies. As the

cryptocurrency industry continues to grow and expand, new

ideas are being brought forth constantly — many of which

would not have been possible without Turing completeness.

Does a System Have To Be Turing Complete To Be Useful in

Blockchain?

A system has to be Turing complete in order to be useful in the

blockchain, but it can have all the other desirable properties of a

blockchain, such as decentralization and trustless transactions.

A system is Turing complete if it can simulate an arbitrary

computer program. Turing complete systems have to be able to

run any possible computation, which includes the most complex

types of computation such as those found in blockchain. This

type of system also often has better performance than other

systems because it can use a set of rules which are more

efficient when solving problems with many steps.

In addition to being Turing complete, a system must also be

decentralized and allow trustless transactions according to

consensus in order for it to be useful in the blockchain. These

properties are necessary for the security and consistency that a

blockchain needs in order for its data records or “blocks” to

have value and meaning.

Aves is a very new technology with many possibilities that can

disrupt our lives in the future. In short, it is a complex network of

computers that allows one to create own currency and it is

totally decentralized and free to use.

Mining Centralization

The Bitcoin mining algorithm essentially works by having miners

compute SHA256 on slightly modified versions of the block

header hundreds of thousands of times over and over again

until eventually, one node comes up with a version whose hash

is much less than the target (currently around 2^190). however,

this mining algorithm is susceptible to two forms of

centralization. First, the mining ecosystem has come to be

dominated by ASICs (application-specific integrated circuits),

computer chips designed for, and therefore thousands of times

more efficient at, the specific task of Bitcoin mining. This means

that Bitcoin mining is no longer a highly decentralized and

egalitarian pursuit, requiring millions of dollars of capital to

effectively participate in. Second, most Bitcoin miners do not

actually perform block validation locally; instead, they rely on a

centralized mining pool to provide the block headers. This

problem is arguably worse: as of the time of this writing, the top

two mining pools indirectly control roughly 50% of processing

power in the Bitcoin network,

although this is mitigated by the fact that miners can switch to

other mining pools if a pool or coalition attempts a 51% attack.

The current intent at Aves is to use a mining algorithm based on

randomly generating a unique hash function for every 1000

nonces, using a sufficiently broad range of computation to

remove the benefit of specialized hardware. Such a strategy will

certainly not reduce the gain of centralization to zero, but it

does not need to. Note that each individual user, on their

private laptop or desktop, can perform a certain quantity of

mining activity almost for free, paying only electricity costs, but

after the point of 100% CPU utilization of their computer

additional mining will require them to pay for both electricity and

hardware. ASIC mining companies need to pay for electricity

and hardware starting from the first hash. Hence, if the

centralization gain can be kept to below this ratio, (E + H) / E,

then even if ASICs are made there will still be room for ordinary

miners. Additionally, we intend to design the mining algorithm

so that mining requires access to the entire blockchain, forcing

miners to store the entire blockchain and at least be capable of

verifying every transaction. This removes the need for

centralized mining pools; although mining pools can still serve

the legitimate role of evening out the randomness of reward

distribution, this function can be served equally well by peer-to-

peer pools with no central control. It additionally helps fight

centralization, by increasing the number of full nodes in the

network so that the network remains reasonably decentralized

even if most ordinary users prefer light clients.

Scalability

One common concern about Aves is the issue of scalability.

Like Bitcoin, Aves suffers from the flaw

that every transaction needs to be processed by every node in

the network. With Bitcoin, the size of the current blockchain

rests at about 437 GB, growing by about 1 MB per hour. If the

Bitcoin network were to process Visa's 2000 transactions per

second, it would grow by 1 MB per three seconds (1 GB per

hour, 8 TB per year). Aves is likely to suffer a similar growth

pattern, worsened by the fact that there will be many

applications on top of the Aves blockchain instead of just a

currency as is the case with Bitcoin, but ameliorated by the fact

that Aveses full nodes need to store just the state instead of the

entire blockchain history. The problem with such a large

blockchain size is centralization risk. If the blockchain size

increases to, say, 100 TB, then the likely scenario would be that

only a very small number of large businesses would run full

nodes, with all regular users using light SPV nodes. In such a

situation, there arises the potential concern that the full nodes

could band and all agree to cheat in some profitable fashion

(eg. change the block reward, give themselves BTC). Light

nodes would have no way of detecting this immediately. Of

course, at least one honest full node would likely exist, and after

a few hours information about the fraud would trickle out

through channels like Reddit, but at that point it would be too

late: it would be up to the ordinary users to organize an effort to

blacklist the given blocks, a massive and likely infeasible

coordination problem on a similar scale as that of pulling off a

successful 51% attack. In the case of Bitcoin, this is currently a

problem, but there exists a blockchain modification suggested

by Peter Todd which will alleviate this issue. In the near term,

Aves will use two additional strategies to cope with this

problem. First, because of the blockchain-based mining

algorithms, at least every miner will be forced to be a full node,

creating a lower bound on the number of full nodes. Second

and more importantly, however, we will include an intermediate

state tree root in the blockchain after processing each

transaction. Even if block validation is centralized, as long as

one honest verifying node exists, the centralization problem can

be circumvented via a verification

protocol. If a miner publishes an invalid block, that block must

either be badly formatted, or the state S[n] is incorrect. Since

S[0] is known to be correct, there must be some first state S[i]

that is incorrect where S[i-1] is correct. The verifying node

would provide the index i, along with a "proof of invalidity"

consisting of the subset of Patricia tree nodes needing to

process APPLY(S[i-1],TX[i]) -> S[i]. Nodes would be able to use

those nodes to run that part of the computation, and see that

the S[i] generated does not match the S[i] provided. Another,

more sophisticated, attack would involve the malicious miners

publishing incomplete blocks, so the full information does not

even exist to determine or not blocks are valid. The solution to

this is a challenge-response protocol: verification nodes issue

"challenges" in the form of target transaction indices, and upon

receiving a node a light node treats the block as untrusted until

another node, the miner or another verifier, provides a subset of

Patricia nodes as a proof of validity..

Decentralized Applications

The contract mechanism described above allows anyone to

build what is essentially a command line application run on a

virtual machine that is executed by consensus across the entire

network, allowing it to modify a globally accessible state as its

“hard drive”. However, for most people, the command line

interface that is the transaction sending mechanism is not

sufficiently user-friendly to make decentralization an attractive

mainstream alternative. To this end, a complete “decentralized

application” should consist of both low-level business-logic

components, whether implemented entirely on Aves, using a

combination of Aves and other systems or other systems

entirely, and high-level graphical user interface components.

The Aves client’s design is to serve as a web browser, but

include support for a “Ave” Javascript API object, which

specialized web pages viewed in the client will be able to use to

interact with the Aves blockchain. From the point of view of the

“traditional” web, these web pages are entirely static content,

since the blockchain and other decentralized protocols will

serve as a complete replacement for the server for the purpose

of handling user-initiated requests. Eventually, decentralized

protocols, hopefully themselves in some fashion using Aves,

may be used to store the web pages themselves.

Conclusion

The Aves protocol was originally conceived as an upgraded

version of a cryptocurrency, providing advanced features such

as on-blockchain escrow, withdrawal limits and financial

contracts, gambling markets and the like via a highly

generalized programming language. The Aves protocol would

not "support" any of the applications directly, but the existence

of a Turing-complete programming language means that

arbitrary contracts can theoretically be created for any

transaction type or application. What is more interesting about

Aves, however, is that the Aves protocol moves far beyond just

currency. Protocols and decentralized applications around

decentralized file storage, decentralized computation and

decentralized prediction markets, among dozens of other such

concepts, have the potential to substantially increase the

efficiency of the computational industry, and provide a massive

boost to other peer-to-peer protocols by adding for the first time

an economic layer. Finally, there is also a substantial array of

applications that have nothing to do with money at all. The

concept of an arbitrary state transition function as implemented

by the Aves protocol provides for a platform with unique

potential; rather than being a closed-ended, single-purpose

protocol intended for a specific array of applications in data

storage, gambling or finance, Aves is open-ended by design,

and we believe that it is extremely well-suited to serving as a

foundational layer for a very large number of both financial and

non-financial protocols in the years to come.

 References

Ethereum White paper by Vitalik Buterin 2014

https://ethereum.org/en/whitepaper

